

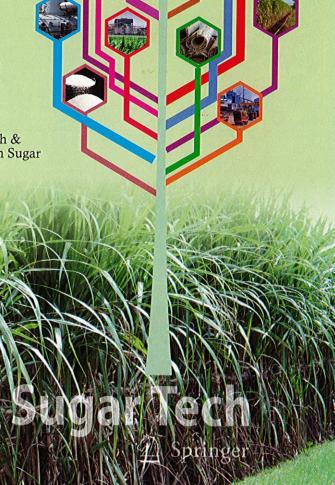
Souvenir de Presentation

International Conference Sugarcon-2019

Green Technologies for Sustainable Development of Sugar & Integrated Industries

February 16-19, 2019

ICAR-Indian Institute of Sugarcane Research Lucknow, Uttar Pradesh, India



Organized by
Society for Sugar Research & Promotion
ICAR-Indian Institute of Sugarcane Research &
International Association for Professionals in Sugar and Integrated Technologies

International Conference

SUGARCON-2019

February 16-19, 2019

Green Technologies for Sustainable Development of Sugar & Integrated Industries

Organized by

Society for Sugar Research and Promotion ICAR-Indian Institute of Sugarcane Research

Souvenir de Presentation

Compiled and Edited by

Dr Amaresh Chandra Dr. M. Swapna Dr. R. Manimekalai Dr Priyanka Singh Dr A.K. Tiwari Dr. G.P. Rao

Venue

ICAR-Indian Institute of Sugarcane Research
Lucknow, India

CONCURRENT SESSION B-III

STRESSED-ECOSYSTEMS AND IMPROVED CROP PRODUCTIVITY FOR BETTER FARM RETURN

LEAD PAPERS

B-III-L-1

The varietal variation in photosynthesis and transpiration efficiency at initial growth stage of sugarcane at elevated atmospheric CO₂ and temperature

A.L.C De Silva^{1*}, W.A.J.M. De Costa² and H.A.K.N.N. Senarathna²

¹Crop and Resource Management Division, Sugarcane Research Institute Uda Walawe, Sri Lanka

²Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka *E-mail: alcdesilva@gmail.com

A field experiment was conducted in 2017/18 at the Sugarcane Research Institute, Uda Walawe, Sri Lanka with eight commercial sugarcane varieties under well-watered conditions in open-top chambers and in the open field to determine their varietal variation of leaf net photosynthesis rate (A_n) and transpiration efficiency (T_E) at elevated atmospheric carbon dioxide concentration (ECO₂) and air temperature (ETem) in a split-plot design with three replicates. Two levels of each CO₂ (~400 and 665 ppm) and temperature (~34 and 37°C) were used as treatments in the main-plots and the eight varieties in the sub-plots. A_n and transpiration rate were measured at 86 days after planting using the portable photosynthesis system and $T_{\scriptscriptstyle\rm E}$ was calculated. Significant interaction effects on A_n and T_E among the varieties, and the levels of CO₂ and temperature were observed. Elevated CO₂ did not affect A_n, but it increased T_E in all the varieties. ETem decreased $T_{\rm E}$ in all the varieties. The combined effect of ECO₂ and ETem decreased A_n and increased T_E in all varieties with the ECO₂ effect being dominant over ETem. The varieties SL 83 06 and SL 96 128 had the highest A_n while SL 83 06 and SL 90 6237 had the highest T_E at ECO₂ and ETem conditions.

